

Problem Statements

Agriculture (10 Use Cases)

1. Title: Leaf Disease Detector for Small Farms

Background & Objective: Help small farmers diagnose crop diseases using mobile leaf images.

Task: Classify leaf images as “Healthy” or “Diseased” and name the disease.

Expected Output: “Result: Diseased, Disease: Blight” or “Result: Healthy”

Acceptance Criteria:

- Correctly classify at least 80% of provided images.
- Show clear error if image is blurry or blank.
- Console outputs match sample format.

Language: Python

Datasets: Use Kaggle PlantVillage (or sample leaf images).

Complexity: Medium

2. Title: Crop Yield Forecast Tool

Background & Objective: Forecast next season yield based on basic farm data (area, soil, water, crop type).

Task: Predict the expected yield (kg) for given input values.

Expected Output: “Expected Yield: 1172 kg”

Acceptance Criteria:

- Provide predictions for all five sample crop/soil combinations.
- Output is a single rounded number.
- Handles missing/invalid input gracefully.

Language: Python

Datasets: Use simple CSV data or synthetic samples.

3. Title: Fertilizer Recommendation Chatbot

Background & Objective: Guide farmers in choosing fertilizer based on soil and crop type.

Task: Build a chatbot to suggest fertilizer.

Expected Output: “Recommended Fertilizer: Urea, Quantity: 5 kg/acre”

Acceptance Criteria:

- Supports at least 6 crop types.
- Handles at least 3 soil types.
- Clear UI or console chat.

Language: Python

4. Title: Weather Alert SMS System

Background & Objective: Inform about severe weather in village via SMS-like alerts.

Task: Program checks weather data (rain, wind, temperature) and “sends” an alert string.

Expected Output: “Alert: Heavy rainfall expected tomorrow.”

Acceptance Criteria:

- Triggers alert for specified thresholds.
- Can process 10 data points.

Language: Python

5. Title: Market Price Predictor

Background & Objective: Help farmers estimate prices for crops before selling.

Task: Predict next week's market price for chosen crop from historical data.

Expected Output: "Predicted Price: ₹1,250 per quintal"

Acceptance Criteria:

- Accepts 5 crop types.
- Predicted price is within $\pm 20\%$ of test data.
- Error for missing data.

Language: Python

6. Title: Pest Identification Assistant

Background & Objective: Identify possible pests from farmer-described symptoms and crop.

Task: Simple text bot matches problem description to pest type.

Expected Output: "Likely Pest: Aphid; Suggested Action: Spray Neem extract."

Acceptance Criteria:

- Supports 6 pests (must cover rice, wheat, pulses).
- Advice for action is practical.

Language: Python

7. Title: Water Usage Predictor

Background & Objective: Forecast daily water requirements for a field.

Task: Use weather and crop info to calculate required liters of irrigation.

Expected Output: "Required Irrigation: 500 liters/day"

Acceptance Criteria:

- Handles 3 crop types and daily weather for one week.
- Produces forecast report as simple table.

Language: Python

8. Title: Farm Expense Calculator

Background & Objective: Track farm input costs and calculate total/average expense.

Task: Form reads input list (seed, fertilizer, labor) and outputs summary.

Expected Output: "Total Expense: ₹15,000; Average Cost per Acre: ₹3,000"

Acceptance Criteria:

- Accepts 5 items minimum.
- Descriptive summary table/output.
- Handles negative/missing values gracefully.

Language: Python

9. Title: Seed Quality Classification

Background & Objective: Identify "Good" vs "Poor" seeds based on test results (weight, color, germination days).

Task: AI classifier ranks seed batch.

Expected Output: “Batch #12: Good quality”

Acceptance Criteria:

- Correct for 8 out of 10 test batches.
- Clear message for missing/invalid data.

Language: Python

10. Title: Animal Health Tracker

Background & Objective: Monitor livestock and flag illness risk.

Task: System logs animal data and flags any alerts (“cough”, “low appetite”).

Expected Output: “Alert: Buffalo #4 may need vet attention.”

Acceptance Criteria:

- Covers cows, buffaloes, goats, chickens.
- Flags correct alerts for 5 sample animals.

Language: Python

Healthcare (10 Use Cases)

11. Title: Basic Rural Clinic Symptom Checker

Background & Objective: Help staff in clinics suggest illness from typed symptoms.

Task: Chatbot asks for up to 3 symptoms, predicts condition/urgency.

Expected Output: “Probable condition: Malaria. Advice: Visit doctor soon.”

Acceptance Criteria:

- Covers at least 5 illnesses.
- Responds to all test cases provided.

Language: Python

12. Title: Prescription Translator

Background & Objective: Convert handwritten prescription text into readable instructions.

Task: Accepts scanned prescription text string, outputs doctor’s advice in layman’s words.

Expected Output: “Take Paracetamol, 500 mg, twice daily for 3 days.”

Acceptance Criteria:

- Correct for 6 out of 8 sample inputs.
- Handles missing/unclear drugs with error message.

Language: Python

13. Title: Health Report Summarizer

Background & Objective: Summarize lab test results for patient understanding.

Task: Summarize given blood/urine report text into 2-3 simple points.

Expected Output: “Sugar level is normal. No infection detected.”

Acceptance Criteria:

- For 5 report inputs, summary matches sample solution.
- Handles “unclear” input gracefully.

Language: Python

14. Title: Basic Covid Risk Checker

Background & Objective: Check Covid risk from symptoms and contacts.

Task: Program asks user questions and calculates risk score.

Expected Output: “Risk Level: Medium. Precaution: Use mask, get tested.”

Acceptance Criteria:

- Correct response to given sample cases.
- Error message on incomplete answers.

Language: Python

15. Title: Simple Drug Interaction Finder

Background & Objective: Flag dangerous overlaps in patient's medicines.

Task: Accepts list of up to 5 medicines, shows "No conflict" or "Conflict: Paracetamol & Ibuprofen."

Expected Output: "Warning: Avoid using Drug A with Drug B."

Acceptance Criteria:

- Identifies at least 5 known conflicts.
- Tests reflect results.

Language: Python

16. Title: Doctor Visit Reminder

Background & Objective: Notify patient of next visit date via SMS-style alert.

Task: Input: patient name and last visit date; Output: next recommended visit.

Expected Output: "Reminder: Visit your clinic on 22 Oct."

Acceptance Criteria:

- Calculates dates for 3 types of illnesses (fever, TB, diabetes).
- Output matches sample test cases.

Language: Python

17. Title: Health Habit Tracker

Background & Objective: Simple AI logs exercise, diet info, and rates weekly health.

Task: Accept and log daily health data for a week, rate as "Excellent", "Good", or "Needs Improvement."

Expected Output: "Weekly Report: Good"

Acceptance Criteria:

- Accepts 7 days' records, handles missing data.
- Report for any week of data.

Language: Python

18. Title: Medicine Dosage Calculator

Background & Objective: Calculate correct dosage for child, adult, and elderly.

Task: Accept person's age and weight; output exact dosage to administer.

Expected Output: "Child, 22 kg: 113 mg"

Acceptance Criteria:

- Calculations match 5 sample cases.
- Error for missing/invalid data.

Language: Python

19. Title: Appointment Scheduler Bot

Background & Objective: Help rural patients book doctor appointments.

Task: Chatbot interacts to suggest slot/time for visit.

Expected Output: "Appointment fixed: 23 Oct, 10:30 AM"

Acceptance Criteria:

- Works for 5 time slot requests.
- Handles full/invalid slots.

Language: Python

20. Title: Health FAQ Generator

Background & Objective: AI generates answers to common healthcare questions in simple English.

Task: Accepts a question string and answers in 2–3 sentences.

Expected Output: “Q: What is malaria? A: Malaria is caused by mosquitoes. It gives fever and chills.”

Acceptance Criteria:

- Answers at least 8 sample questions.
- Answers are clear and accurate.

Language: Python

Nature Conservation (10 Use Cases)

21. Title: Wildlife Species Identifier

Background & Objective: Identify animal species from text descriptions.

Task: Accept text about animal (“Large ears, trunk, gray skin”) and output species name.

Expected Output: “Species: Elephant”

Acceptance Criteria:

- Recognizes at least 8 species.
- Output matches test descriptions.

Language: Python

22. Title: Forest Fire Risk Predictor

Background & Objective: Predict fire risk from weather and dryness data.

Task: Feed in humidity, wind, temp, past fires, get risk (“Low”, “Medium”, “High”).

Expected Output: “Risk Level: High”

Acceptance Criteria:

- Matches 7 out of 9 sample cases.
- Error for missing data.

Language: Python

23. Title: Poacher Alert System

Background & Objective: Alert forest guards to unusual animal movements.

Task: Analyze GPS path; if path is erratic or near villages, trigger “Alert”.

Expected Output: “Alert: Possible poacher presence near zone 5.”

Acceptance Criteria:

- Correctly identifies 5 out of 6 sample alerts.
- Output matches sample format.

Language: Python

24. Title: Water Pollution Detector

Background & Objective: Test river/lake data (pH, toxins) and flag dangerous water.

Task: Accepts water quality test numbers, outputs warning if values exceed safe range.

Expected Output: “Warning: Unsafe water. pH=5, Lead=45ppm.”

Acceptance Criteria:

- Flags danger for all critical test cases.
- Handles at least 3 pollutants.

Language: Python

25. Title: Anti-Plastic Campaign AI**Background & Objective:** Create slogans and info for village anti-plastic drive.**Task:** Generates 3 campaign slogans and basic info text.**Expected Output:** “Say No to Plastic!” etc.**Acceptance Criteria:**

- Produces 3 unique slogans/info points.
- Slogans match topic.

Language: Python**26. Title:** Endangered Species Fact Bot**Background & Objective:** Provide short fact sheets for listed animals/plants.**Task:** Accept name and output short fact sheet (2–3 points).**Expected Output:** “Tiger: Tiger is endangered...”**Acceptance Criteria:**

- Covers 8 species.
- Output matches sample test cases.

Language: Python**27. Title:** Village Tree Mapper**Background & Objective:** Track village tree counts, health, and types.**Task:** Input list of tree data; produce summary of count and health (good/poor).**Expected Output:** “Neem: 14 trees, Good; Mango: 9, Poor”**Acceptance Criteria:**

- Accepts data for at least 3 tree types.
- Outputs summary table.

Language: Python**28. Title:** Conservation Awareness Quiz**Background & Objective:** Teach about conservation via quiz with hints.**Task:** Generate 5 random multiple-choice questions, grade answers.**Expected Output:** “Score: 3 out of 5”**Acceptance Criteria:**

- Questions match conservation topics.
- Grading matches sample answers.

Language: Python**29. Title:** Rainfall Pattern Analyzer**Background & Objective:** Compare rainfall over past 10 years for one district.**Task:** Read yearly data, show chart/summary of increase or decrease.**Expected Output:** “Rainfall increased in 6 years, decreased in 4.”**Acceptance Criteria:**

- Reads data from CSV.
- Output matches sample test case.

Language: Python**30. Title:** Butterfly Spotting Guide**Background & Objective:** Identify common butterflies from images or colors described.**Task:** Input color/pattern (or image), output species name.**Expected Output:** “Species: Monarch”**Acceptance Criteria:**

- Covers 7 species.
- Output matches test cases.

Language: Python

Engineering (10 Use Cases)

31. Title: Machine Fault Detector

Background & Objective: Identify “Fault” or “No Fault” from sensor input.

Task: Accept sensor numbers, output status.

Expected Output: “Machine #1: Fault”

Acceptance Criteria:

- Correctly flags status for 8 out of 10 tested sensors.
- Error for missing data.

Language: Python

32. Title: Maintenance Scheduler

Background & Objective: Suggest next service dates for machines from usage log.

Task: Input usage days and prior service dates, output recommended next service.

Expected Output: “Machine #2: Next service in 18 days.”

Acceptance Criteria:

- Works for 5 samples.
- Output matches format.

Language: Python

33. Title: Simple Inventory Manager

Background & Objective: Manage small shop inventory, auto-flag low stock.

Task: Accept item/qty, output “Low stock” if quantity below threshold.

Expected Output: “Rice: Low stock”

Acceptance Criteria:

- Handles at least 8 items.
- Flags correct items on test.

Language: Python

34. Title: Simple Parking Finder

Background & Objective: Help users find free parking spaces in their area.

Task: Accept location/slots, output available slots.

Expected Output: “Available at: Market road, 3 slots.”

Acceptance Criteria:

- Matches sample test data.
- Error if no slots.

Language: Python

35. Title: Smart Meter Consumption Tracker

Background & Objective: Log daily electricity use and summarize week’s pattern.

Task: Input 7 days’ data; output summary and average.

Expected Output: “Week Total: 55 units, Average: 7.9 units/day”

Acceptance Criteria:

- Accepts valid numbers, summarizes correctly.

Language: Python

36. Title: Road Condition Analyzer

Background & Objective: AI judges road photo/text as “Good”, “Bad”, or “Needs Repair”.

Task: Accepts road data; outputs condition.

Expected Output: “Village Road #4: Needs Repair”

Acceptance Criteria:

- Handles 6 out of 8 test cases.
- Output matches format.

Language: Python

37. Title: Solar Panel Health Checker

Background & Objective: Predicts if solar panel is working well using voltage and temperature readings.

Task: Accepts 3 values; outputs “Good” or “Faulty”.

Expected Output: “Solar Panel #3: Good”

Acceptance Criteria:

- Correct for 7 out of 9 test cases.

Language: Python

38. Title: Water Pump Usage Monitor

Background & Objective: Track water pump hours and alert if overused.

Task: Input hour logs, output usage status.

Expected Output: “Pump #2: Overused, needs check”

Acceptance Criteria:

- Works for 5 samples.
- Output matches test.

Language: Python

39. Title: Small Project Cost Estimator

Background & Objective: Estimate cost for building a shed or repairing a classroom.

Task: Accept inputs (area, material, labor), output total cost.

Expected Output: “Estimated Cost: ₹42,000”

Acceptance Criteria:

- Accurate for 5 sample projects.

Language: Python

40. Title: Village Bridge Load Calculator

Background & Objective: Calculate safe weight a bridge can hold.

Task: Accept bridge type, length, material, output safe load.

Expected Output: “Safe Load: 9.5 tons”

Acceptance Criteria:

- Result matches 7 sample bridges.

Language: Python

Information Technology (10 Use Cases)

41. Title: Sentiment Analyzer for Local News

Background & Objective: AI classifies news as Positive, Negative, or Neutral.

Task: Input news story text, output sentiment.

Expected Output: “Sentiment: Positive”

Acceptance Criteria:

- Works for at least 7 news samples.

Language: Python

42. Title: SMS Spam Detector

Background & Objective: Help filter unwanted SMS using simple AI.

Task: Input SMS text, output “Spam” or “Not Spam”.

Expected Output: “Result: Spam”

Acceptance Criteria:

- Matches 7 out of 9 sample messages.

Language: Python

43. Title: Auto Code Commenter

Background & Objective: AI adds comments to basic code snippets.

Task: Input simple function, output code with comments.

Expected Output:

```
python
```

```
def add(a, b):  
    # Adds two numbers  
    return a + b
```

Acceptance Criteria:

- Handles 5 test snippets.
- Comments are meaningful.

Language: Python

44. Title: Basic Student Result Analyzer

Background & Objective: Helps teachers analyze student marks and find toppers/failures.

Task: Accept marks of 5 students, output topper and failed students list.

Expected Output: “Topper: Suma; Failed: Ravi”

Acceptance Criteria:

- Matches sample data.

Language: Python

45. Title: Weather Data Summarizer

Background & Objective: AI system summarizes weather for a week into simple report.

Task: Input 7 days' temp/rain data; output summary (“Mostly sunny, little rain”).

Expected Output: “Week: Mostly rainy. Avg temp: 26°C.”

Acceptance Criteria:

- Matches sample summary.

Language: Python

46. Title: Village COVID Bulletin Bot

Background & Objective: Generate easy-to-understand COVID updates.

Task: Accept latest stats, produce 3-line village bulletin.

Expected Output: “Today: 3 new cases, 1 recovery, No deaths.”

Acceptance Criteria:

- Produces readable, accurate summary.

Language: Python

47. Title: Expense Tracker App

Background & Objective: Tracks and summarizes daily expenses for a family.

Task: Input 7 days' expenses, output summary/chart.

Expected Output: “Week: Total ₹2,450, Avg/day: ₹350”

Acceptance Criteria:

- Works with provided numbers, generates chart/summary.

Language: Python

48. Title: Language Translator (English–Tamil)

Background & Objective: Translate village notices between English and Tamil.

Task: Input text (English or Tamil), output translated version.

Expected Output: “English: The school is closed. Tamil: பள்ளி மூடப்பட்டுள்ளது”

Acceptance Criteria:

- Handles 7 out of 10 sample sentences.

Language: Python

49. Title: Simple Attendance Tracker

Background & Objective: Tool for teachers to log daily student attendance.

Task: Input student names/present status, output absent list and attendance rate.

Expected Output: “Absent: Arjun; Attendance: 90%”

Acceptance Criteria:

- Works for 10 students data.

Language: Python

50. Title: Rural E-commerce Product Suggestion Bot

Background & Objective: Suggest affordable products (mobile, cycle, books) for villagers.

Task: Accept user's interest/budget; output 3 product suggestions.

Expected Output: “Top Picks: Nokia A1, Hero Cycle, Science Book”

Acceptance Criteria:

- Works for at least 5 budget/user queries.
- Suggestions are relevant and affordable.

Language: Python

SSM INSTITUTE OF ENGINEERING AND TECHNOLOGY

STUDENTS PROJECT IDEATION

SI.NO	Organization	Idea / Problem Statements	Dept	Remarks
SPIC-001	ENTHHUTECH	LIQUID LEVEL MONITORING FOR CHEMICAL INDUSTRIES USING ENCRYPTED IOT CLOUD SERVER	CSE	
SPIC-002	ENTHHUTECH	DRINKING WATER QUALITY MONITORING AND DATA UPLOAD TO I.T.U. PRESCRIBED IOT CLOUD PLATFORM	CSE	
SPIC-003	ENTHHUTECH	SMART WATER MANAGEMENT SYSTEM FOR APARTMENTS AND VILLAS USING IOT CLOUD ARCHITECTURE	CE	
SPIC-004	ENTHHUTECH	REDUCTION OF WATER WASTAGE USING IOT BASED MECHANICAL ACTUATORS	MECH	
SPIC-005	ENTHHUTECH	CUSTOMISED IOT CLOUD BASED OPTIMISED WATER DISTRIBUTION	CSE	
SPIC-006	ENTHHUTECH	SMART SOIL HEALTH MONITORING USING INDUSTRY GRADE SENSORS AND ENCRYPTED (HARDWARE AND FIRMWARE LEVEL) DEVICES	EEE	
SPIC-007	ENTHHUTECH	PRECISION IRRIGATION CONTROL USING ENCRYPTED IOT CLOUD SERVER	ECE	
SPIC-008	ENTHHUTECH	IOT CLOUD SERVER BASED SMART FERTIGATION SYSTEMS	CSE	
SPIC-009	ENTHHUTECH	AIR QUALITY MONITORING USING LoRaWAN ENABLED SMART SENSORS AND ENCRYPTION BASED DEVICES	ECE	
SPIC-010	ENTHHUTECH	SMART GREEN HOUSE FARMING USING LoRaWAN-IOT	ECE	
SPIC-011	ENTHHUTECH	IOT ENABLED SHADE NET FARMING WITH ENCRYPTED CLOUD BASED MONITORING	ECE	
SPIC-012	ENTHHUTECH	LoRaWAN-IOT BASED HYDROPONICS FARMING WITH DATA ANALYTICS ON CLOUD SERVER	ECE	
SPIC-013	ENTHHUTECH	DISSOLVED OXYGEN LEVEL MONITORING AND CONTROL USING IOT CLOUD SERVER	CSE	
SPIC-014	ENTHHUTECH	ENCRYPTED IOT BASED AUTOMATIC FEED CONTROL FOR SHRIMP PONDS	CSE	
SPIC-015	ENTHHUTECH	AI BASED SHRIMP GROWTH MONITORING USING INTEGRATED IMAGE PROCESSING DEVICES AND IOT CLOUD SERVER	ECE	
SPIC-016	ENTHHUTECH	LoRaWAN-IOT BASED SHRIMP / FISH COUNT MEASUREMENT FOR EFFICIENT FOOD FEEDING SYSTEM INTEGRATION	ECE	
SPIC-017	ENTHHUTECH	LoRaWAN-IOT BASED WATER QUALITY MONITORING SYSTEM FOR BRACKISH WATER PONDS / POOLS	ECE	
SPIC-018	ENTHHUTECH	OPTIMISED FOOD FEEDING SYSTEM FOR FISH PONDS USING LoRaWAN-IOT DEVICES AND APPLICATION SERVER ON IOT CLOUD	CSE	
SPIC-019	ENTHHUTECH	LoRaWAN-IOT BASED SMART & EFFICIENT EGG HATCHING	ECE	

SPIC-020	ENTHHUTECH	IOT CLOUD SERVER BASED INDOOR AMBIENCE MONITORING SYSTEM FOR BIRDS FARM	CSE	
SPIC-021	ENTHHUTECH	SMART FEED STOCK MONITORING AND ANALYSIS USING LoRaWAN SYSTEM	ECE	
SPIC-022	ENTHHUTECH	IOT BASED EGG STOCK MONITORING AND ANALYSIS ON IOT CLOUD PLATFORM	CSE	
SPIC-023	ENTHHUTECH	EGG SPOILAGE AVOIDANCE SYSTEM USING LoRaWAN IOT	ECE	
SPIC-024	ENTHHUTECH	SMART INCUBATION MONITORING SYSTEM USING ENCRYPTED IOT CLOUD PLATFORM	CSE	
SPIC-025	ENTHHUTECH	TEMPERATURE AND HUMIDITY MONITORING IN VACCINE STORAGE PLANT USING SMART DEVICES	ECE	
SPIC-026	ENTHHUTECH	IOT BASED SMART ELECTRIC ENERGY MONITORING SYSTEMS	EEE	
SPIC-027	ENTHHUTECH	AMBIENCE MONITORING IN INDUSTRIES USING IOT DEVICES	EEE	
SPIC-028	ENTHHUTECH	STEAMLINE AND PRESSURE MONITORING SYSTEMS	MECH	
SPIC-029	ENTHHUTECH	VIBRATION MONITORING SYSTEM FOR LARGE MACHINES	MECH	
SPIC-030	ENTHHUTECH	GAS CYLINDER MONITORING SYSTEMS	MECH	
SPIC-031	ENTHHUTECH	SMOKE AND FIRE DETECTION SYSTEMS WITH DATA ACQUISITION DEVICES	ECE	
SPIC-032	ENTHHUTECH	AUTOMATED LIGHT AND HVAC CONTROL SYSTEMS USING SMART IOT DEVICES WITH DATA ANALYTICS	EEE	
SPIC-033	ENTHHUTECH	PREDICTIVE MAINTENANCE SYSTEMS FOR INDUSTRIES WITH LARGE MACHINES	MECH	
SPIC-034	ENTHHUTECH	AI BASED OCCUPANCY MONITORING SYSTEMS	ECE	
SPIC-035	ENTHHUTECH	IOT BASED WAREHOUSE MANAGEMENT SYSTEM	CSE	
SPIC-036	ACCENT TECHNO	ONLINE CRIME REPORTING SYSTEM	CSE	
SPIC-037	ACCENT TECHNO	AGRICONNECT: ACCESSIBLE AGRICULTURE INFORMATION	CSE	
SPIC-038	ACCENT TECHNO	SAFE ROADS: STREAMLINING TRAFFIC OFFENSE REPORTING FOR SAFER STREETS	CSE	
SPIC-039	ACCENT TECHNO	HEALTH GUARDIAN: ANDROID WELLNESS CITADEL - NURTURING PATIENT HEALTH	CSE	
SPIC-040	ACCENT TECHNO	SAFE HAVEN: SECURE NEXUS SHELTER - ANDROID SAFETY HAVEN	CSE	
SPIC-041	ACCENT TECHNO	BIG FOOT: INPECTOR OF HEAVY WEIGHT	CSE	
SPIC-042	ACCENT TECHNO	ASSETOPS HUB: STREAMLINING DATA CONTROL – YOUR COMPREHENSIVE PLATFORM FOR EFFICIENT ASSET DATA MANAGEMENT	CSE	
SPIC-043	ACCENT TECHNO	CREATING A COMPASSIONATE VETERINARY CARE PLATFORM: A COMPREHENSIVE STEP-BY-STEP GUIDE TO BUILDING A LIFELONG BOND BETWEEN PETS AND THEIR CAREGIVERS	CSE	
SPIC-044	ACCENT TECHNO	CODEGUARDIAN: EMPOWERING MALWARE ANALYSIS – A COMPREHENSIVE SYSTEM CRAFTED WITH PRECISION FOR ROBUST SECURITY INSIGHTS	CSE	

SPIC-045	ACCENT TECHNO	GREENMARKET OASIS: CRAFTING AN ECO-FRIENDLY ORGANIC FOOD STORE FOR A HEALTHIER TOMORROW	CSE	
SPIC-046	STARTUPTN	CREATE A REFERRAL PROCESS PLATFORM THAT HELPS TEACHERS TO RAISE AND ESCALATE MAJOR BEHAVIOR ISSUES IN THE CLASSROOM IN REAL-TIME.	CSE	
SPIC-047	STARTUPTN	CREATE A DEVICE THAT CAN HELP PEOPLE LIVING WITH CHRONIC MEDICAL CONDITIONS TO REGULARLY MONITOR THEIR HEALTH PARAMETERS AND VITALS TO LIVE A HEALTHY LIFE.	ECE	
SPIC-048	STARTUPTN	THE IDEA IS TO HELP PEOPLE VIEW AND STUDY THEIR OVERALL SPENDING ANALYSIS BY DEVELOPING A MOBILE APP TO ANALYZE ALL THE PURCHASES MADE BY SCANNING A RECEIPT.	CSE	
SPIC-049	STARTUPTN	WHEN PROCESSING LOAN APPLICATIONS, FINANCIAL INSTITUTIONS REQUIRE COMPANIES TO SUBMIT ORIGINALS OF DOCUMENTS THAT ARE WITNESSED BY A LAWYER/NOTARY.	CSE	
SPIC-050	STARTUPTN	CREATE A SOLUTION THAT CAN HELP US OVERCOME THE TECHNOLOGICAL, PHYSICAL, AND PSYCHOLOGICAL BARRIERS THAT PREVENT HUMANS FROM FORMING MEANINGFUL CONNECTIONS WITH OTHERS.	CSE	
SPIC-051	STARTUPTN	DELIVERY OF ESSENTIAL MEDICALS BY DRONES FOR INACCESSIBLE REGIONS	ECE	
SPIC-052	STARTUPTN	IOT BASED SMART WASTE MANAGEMENT SYSTEM FOR SMART CITIES.	CE	
SPIC-053	STARTUPTN	A TRACK ON THE SPECIAL DEMANDS OF THE PARTICIPANTS, COVERING ALL THE OUT-OF-THE-BOX IDEAS THAT DO NOT FIT IN ANY OF THE ABOVE-MENTIONED TRACKS, FOR THE WILD IDEAS BREWING IN THE SCULPTED MINDS SHOWING HOW GREAT AN ENTREPRENEUR YOU CAN BE.	ECE	
SPIC-054	MAXELERATOR	PROBLEM STATEMENT TITLE: DEVELOP AN IOT ENABLED SOLUTION WITH ANDROID APPLICATION TO GIVE REAL-TIME PARKING SPACE AVAILABLE ON THE CAMPUS / CITY / RESIDENT SOCIETIES	CSE	
SPIC-055	MAXELERATOR	TO DETECT AIR QUALITY INSIDE THE CABIN AND IMPROVE IT	CE	
SPIC-056	MAXELERATOR	TASK MANAGEMENT FOR BLUE COLLAR LABOUR.	CSE	
SPIC-057	MAXELERATOR	A MOBILE APP THAT CROWD SOURCES WATER-RELATED PROBLEMS FROM AROUND A COMMUNITY, OPEN SOURCES DATA, ETC. AND DISPLAY THEM ON A MAP.	CSE	
SPIC-058	MAXELERATOR	IDENTIFICATION OF DIFFERENT MEDICINAL PLANTS/RAW MATERIALS THROUGH IMAGE PROCESSING USING MACHINE LEARNING ALGORITHMS	ECE	
SPIC-059	MAXELERATOR	CHALLENGES YOUR CREATIVE MINDS TO CONCEPTUALIZE AND DEVELOP UNIQUE TOYS AND GAMES.	CSE	
SPIC-060	MAXELERATOR	CREATING INTELLIGENT DEVICES TO IMPROVE THE COMMUTATION SECTOR	ECE	
SPIC-061	MAXELERATOR	INNOVATIVE IDEAS THAT HELP MANAGE AND GENERATE RENEWABLE /SUSTAINABLE SOURCES MORE EFFICIENTLY	EEE	

SPIC-062	MAXELERATOR	IDEAS FOCUSED ON THE INTELLIGENT USE OF RESOURCES FOR TRANSFORMING AND ADVANCEMENTS OF TECHNOLOGY WITH COMBINING THE ARTIFICIAL INTELLIGENCE TO EXPLORE MORE VARIOUS SOURCES AND GET VALUABLE INSIGHTS.	CSE	
SPIC-063	MAXELERATOR	SOLUTIONS COULD BE IN THE FORM OF WASTE SEGREGATION, DISPOSAL, AND IMPROVE SANITIZATION SYSTEM.	CE	
SPIC-064	ELYSIUM	DEVELOP AN AI-BASED SYSTEM THAT ANALYSES IMAGES OF CROPS TO IDENTIFY AND DIAGNOSE DISEASES.	ECE	
SPIC-065	ELYSIUM	INTEGRATE AI ALGORITHMS WITH PRECISION AGRICULTURE TECHNIQUES TO PROVIDE FARMERS WITH INSIGHTS INTO OPTIMAL PLANTING TIMES, IRRIGATION SCHEDULES, AND CROP HARVESTING PERIODS BASED ON REAL-TIME WEATHER AND SOIL DATA.	ECE	
SPIC-066	ELYSIUM	CREATE A SYSTEM THAT OPTIMIZES THE SUPPLY CHAIN IN AGRICULTURE, FROM FARM TO MARKET.	ECE	
SPIC-067	ELYSIUM	IMPLEMENT A MACHINE LEARNING MODEL THAT PREDICTS WHEN INDUSTRIAL MACHINERY OR AGRICULTURAL EQUIPMENT IS LIKELY TO FAIL.	EEE	
SPIC-068	ELYSIUM	DEVELOP A SYSTEM THAT USES MACHINE LEARNING TO ANALYZE ENERGY CONSUMPTION PATTERNS AND PREDICT PEAK DEMAND TIMES.	EEE	
SPIC-069	ELYSIUM	BUILD A SENTIMENT ANALYSIS TOOL THAT HELPS INDUSTRIES ANALYZE CUSTOMER FEEDBACK FROM VARIOUS SOURCES (SOCIAL MEDIA, REVIEWS, ETC.) IN REAL TIME	ECE	
SPIC-070	ELYSIUM	USE MACHINE LEARNING TO PREDICT PRODUCT DEMAND FOR VARIOUS INDUSTRIES.	EEE	
SPIC-071	ELYSIUM	USE MACHINE LEARNING ALGORITHMS TO PREDICT TRAFFIC PATTERNS IN URBAN AREAS.	ECE	
SPIC-072	ELYSIUM	CREATE AN AI-BASED SYSTEM THAT MONITORS WATER QUALITY IN RIVERS, LAKES, AND RESERVOIRS.	CE	
SPIC-073	ELYSIUM	IMPLEMENT MACHINE LEARNING ALGORITHMS TO DETECT AND PREVENT FINANCIAL FRAUD IN REAL TIME	ECE	
SPIC-074	ELYSIUM	UTILIZE SATELLITE IMAGERY AND MACHINE LEARNING TO PREDICT AND MONITOR THE RISK OF FOREST FIRES.	ECE	
SPIC-075	ELYSIUM	DESIGN A REAL-TIME WASTE MANAGEMENT SYSTEM THAT USES SENSORS TO MONITOR WASTE LEVELS IN BINS.	ECE	
SPIC-076	ELYSIUM	DEVELOP A SYSTEM THAT MONITORS WATER DISTRIBUTION NETWORKS IN REAL TIME	ECE	
SPIC-077	ELYSIUM	CREATE AN AI-POWERED TUTORING SYSTEM THAT ADAPTS TO INDIVIDUAL LEARNING STYLES.	CSE	

SPIC-078	ELYSIUM	CREATE AN ADAPTIVE LEARNING SYSTEM THAT USES MACHINE LEARNING TO ANALYZE STUDENTS' PERFORMANCE AND ADJUSTS THE DIFFICULTY OF LESSONS AND ASSIGNMENTS BASED ON THEIR INDIVIDUAL LEARNING PACE.	CSE	
SPIC-079	ELYSIUM	IMPLEMENT MACHINE LEARNING ALGORITHMS TO AUTOMATE THE GRADING PROCESS FOR ASSIGNMENTS AND EXAMS.	CSE	
SPIC-080	ELYSIUM	DEVELOP A MACHINE LEARNING MODEL FOR DIAGNOSING MEDICAL CONDITIONS BASED ON PATIENT DATA SUCH AS SYMPTOMS, MEDICAL HISTORY, AND TEST RESULTS	ECE	
SPIC-081	ELYSIUM	DEVELOP A RECOMMENDATION SYSTEM THAT SUGGESTS PERSONALIZED TREATMENT PLANS BASED ON A PATIENT'S GENETIC MAKEUP, MEDICAL HISTORY, AND LIFESTYLE.	ECE	
SPIC-082	ELYSIUM	INTEGRATE AI INTO HEALTH MONITORING WEARABLES TO PROVIDE REAL-TIME ANALYSIS OF PHYSIOLOGICAL DATA	ECE	
SPIC-083	TOMGO	COST EFFECTIVE WASTE-TO-ENERGY SOLUTIONS USING BLOOM BOX TECHNOLOGY.	EEE	
SPIC-084	TOMGO	HYDRAULIC JETTING SYSTEM FOR CLEANING DOMESTIC WASTE.	MECH	
SPIC-085	TOMGO	MULTI-PURPOSE VACUUM CLEANER FOR AGRICULTURE AND DOMESTIC WASTE IN GARDENS	MECH	
SPIC-086	TOMGO	TECHNOLOGY FOR REDUCING HYDRAULIC SYSTEM NOISE.	MECH	
SPIC-087	TOMGO	GPS-GUIDED TRACTORS AND AUTOMATED FARMING EQUIPMENT	MECH	
SPIC-088	TOMGO	ENVIRONMENTALLY FRIENDLY HYDRAULIC FLUIDS.	MECH	
SPIC-089	TOMGO	INTEGRATE SMART SENSORS AND MONITORING SYSTEMS INTO HYDRAULIC COMPONENTS TO ENABLE REAL-TIME PERFORMANCE TRACKING.	MECH	
SPIC-090	TOMGO	DESIGN AND IMPLEMENT HYDRAULIC SYSTEMS THAT OPTIMIZE ENERGY USAGE, REDUCING INEFFICIENCIES AND IMPROVING OVERALL ENERGY EFFICIENCY IN AGRICULTURE MACHINES.	MECH	
SPIC-091	EDII	DEVELOP A SYSTEM THAT UTILIZES SENSORS AND DATA ANALYTICS TO OPTIMIZE THE USE OF RESOURCES SUCH AS WATER, FERTILIZERS, AND PESTICIDES IN AGRICULTURE.	ECE	
SPIC-092	EDII	DESIGN A BLOCKCHAIN-BASED SOLUTION TO ENHANCE TRANSPARENCY AND TRACEABILITY IN THE AGRICULTURAL SUPPLY CHAIN, REDUCING FOOD FRAUD AND ENSURING PRODUCT QUALITY.	ECE	
SPIC-093	EDII	BUILD A PREDICTIVE MODEL THAT HELPS FARMERS ANTICIPATE AND MITIGATE THE IMPACT OF CLIMATE CHANGE ON CROP YIELDS, ALLOWING FOR BETTER PLANNING AND RISK MANAGEMENT.	ECE	
SPIC-094	EDII	DEVELOP AN IMAGE RECOGNITION SYSTEM USING AI TO IDENTIFY AND DIAGNOSE CROP DISEASES EARLY, ENABLING FARMERS TO TAKE TIMELY ACTION AND PREVENT THE SPREAD OF DISEASES.	ECE	

SPIC-095	EDII	DESIGN A SMART IRRIGATION SYSTEM THAT OPTIMIZES WATER USAGE BASED ON SOIL MOISTURE LEVELS, WEATHER FORECASTS, AND CROP REQUIREMENTS.	ECE	
SPIC-096	EDII	BUILD A MOBILE APP THAT ALLOWS FARMERS TO EASILY CAPTURE AND UPLOAD IMAGES OF DISEASED CROPS FOR AUTOMATED DIAGNOSIS AND TREATMENT RECOMMENDATIONS.	CSE	
SPIC-097	EDII	CREATE A SOLUTION FOR MONITORING AND MANAGING WATER QUALITY IN AGRICULTURAL AREAS TO ENSURE THE SAFETY OF IRRIGATION WATER FOR CROPS	ECE	
SPIC-098	EDII	CREATE A MOBILE APP OR PLATFORM THAT PROVIDES SMALLHOLDER FARMERS WITH ACCESS TO FINANCIAL SERVICES, INCLUDING CREDIT, INSURANCE, AND MARKET INFORMATION.	CSE	
SPIC-099	EDII	DESIGN A SYSTEM FOR CONVERTING AGRICULTURAL WASTE INTO VALUABLE PRODUCTS, SUCH AS BIOFUELS, FERTILIZERS, OR ANIMAL FEED.	MECH	
SPIC-100	EDII	DEVELOP ROBOTIC OR AUTOMATED SOLUTIONS FOR TASKS SUCH AS HARVESTING, WEEDING, OR PLANTING TO ADDRESS LABOUR SHORTAGES IN AGRICULTURE.	MECH	
SPIC-101	EDII	CREATE A PLATFORM THAT CONNECTS FARMERS WITH SEASONAL LABOR RESOURCES IN A MORE EFFICIENT AND STREAMLINED MANNER	MECH	
SPIC-102	EDII	BUILD A BLOCKCHAIN-BASED SOLUTION TO ENHANCE TRANSPARENCY IN THE FOOD SUPPLY CHAIN, ENABLING CONSUMERS TO TRACE THE ORIGIN AND JOURNEY OF AGRICULTURAL PRODUCTS FROM THE FARM TO THE MARKET.	CSE	
SPIC-103	EDII	DESIGN AN INNOVATIVE AND EFFICIENT COTTON SEED REMOVING MACHINE THAT CAN STREAMLINE THE COTTON GINNING PROCESS, INCREASE PRODUCTIVITY, AND REDUCE THE MANUAL LABOR REQUIRED FOR SEED REMOVAL.	MECH	
SPIC-104	EDII	DEVELOP AN INTELLIGENT SPRAYING SYSTEM FOR SUGARCANE AGRICULTURE THAT OPTIMIZES INPUT APPLICATION, REDUCES ENVIRONMENTAL IMPACT, AND IMPROVES OVERALL EFFICIENCY.	MECH	
SPIC-105	EDII	CREATE A RELIABLE AND EFFICIENT VALIDATION TOOL THAT ENSURES THE QUALITY AND AUTHENTICITY OF NON-GMO COTTON THROUGHOUT THE SUPPLY CHAIN.	MECH	
SPIC-106	EDII	DESIGN AN INTELLIGENT SUGARCANE HARVESTER EQUIPPED WITH FEATURES FOR EFFICIENT CUTTING, PACKING, AND WASTE DISPOSAL, ENHANCING OVERALL PRODUCTIVITY AND SUSTAINABILITY.	MECH	
SPIC-107	EDII	DESIGN A COMPACT AND PORTABLE DRYING UNIT THAT IS EASY TO TRANSPORT AND CAN BE USED IN BOTH SMALL-SCALE SPICE PROCESSING FACILITIES AND ON-FARM APPLICATIONS.	MECH	

SPIC-108	EDII	IMPLEMENT A SYSTEM THAT PROVIDES REAL-TIME TRACKING AND MONITORING OF AGRICULTURE PRODUCTS THROUGHOUT THE ENTIRE SUPPLY CHAIN. THIS INCLUDES TRACKING THE LOCATION, CONDITION, AND HANDLING OF PRODUCTS DURING TRANSPORTATION.	ECE	
SPIC-109	EDII	DESIGN A PORTABLE STORAGE SYSTEM THAT IS ENERGY-EFFICIENT, PRESERVES THE QUALITY OF VEGETABLES AND FRUITS, AND IS SUITABLE FOR VARIOUS ENVIRONMENTAL CONDITIONS.	EEE	
SPIC-110	EDII	DESIGN COST-EFFECTIVE PESTICIDE SPRAYING ROBOTS THAT CAN EFFICIENTLY AND PRECISELY APPLY PESTICIDES WHILE MINIMIZING ENVIRONMENTAL IMPACT AND OPERATIONAL COSTS FOR FARMERS.	ECE	
SPIC-111	EDII	DESIGN AN INNOVATIVE COVERING SYSTEM THAT ENSURES THE INTEGRITY AND QUALITY OF AGRICULTURE PRODUCTS DURING TRANSPORTATION, WITH A FOCUS ON EASE OF USE, DURABILITY, AND ADAPTABILITY TO VARIOUS TRANSPORTATION METHODS.	MECH	
SPIC-112	EDII	DESIGN AN INNOVATIVE AND EFFICIENT COCONUT HARVESTING SOLUTION THAT ENSURES WORKER SAFETY, INCREASES PRODUCTIVITY, AND MINIMIZES DAMAGE TO THE TREES AND COCONUTS.	MECH	
SPIC-113	EDII	TO DESIGN AN EFFICIENT AMLA DESEEDED MACHINE THAT CAN QUICKLY AND EFFECTIVELY REMOVE THE SEEDS FROM AMLA FRUITS, ENABLING EASIER CONSUMPTION AND PROCESSING.	MECH	
SPIC-114	EDII	TO DESIGN AN EFFICIENT MANGO SKIN REMOVER THAT STREAMLINES THE MANGO POWDER PROCESSING, MAKING IT MORE COST-EFFECTIVE AND SCALABLE.	MECH	
SPIC-115	EDII	THE CHALLENGE IS TO DESIGN AN EFFICIENT AND COST-EFFECTIVE PROCESS FOR PRODUCING DESICCATED COCONUT POWDER WHILE MAINTAINING PRODUCT QUALITY.	MECH	
SPIC-116	EDII	DESIGN INNOVATIVE SOLUTIONS FOR PADDY SEEDING AND HARVESTING THAT IMPROVE EFFICIENCY, REDUCE ENVIRONMENTAL IMPACT, AND CONTRIBUTE TO SUSTAINABLE RICE FARMING.	MECH	
SPIC-117	EDII	DEVELOPMENT OF AN EFFECTIVE GOAT WASTE CLEANING MECHANISM FOR LIVESTOCK FARMING.	MECH	
SPIC-118	EDII	DEVELOP AN ADVANCED AND USER-FRIENDLY SOIL TESTING DEVICE THAT ENABLES REAL-TIME, ON-SITE ANALYSIS FOR FARMERS, PROMOTING SUSTAINABLE AND PRECISE FARMING PRACTICES.	EEE	
SPIC-119	EDII	TO DESIGN AN INNOVATIVE AND EFFICIENT ATTACHMENT BRACKET THAT CAN SECURELY HOLD COCONUTS DURING THE HARVESTING PROCESS, REDUCING THE NEED FOR MANUAL CLIMBING AND ENHANCING OVERALL EFFICIENCY.	MECH	
SPIC-120	MSME	TO CREATE AN EASY-TO-USE DIGITAL ONBOARDING PLATFORM SPECIFICALLY DESIGNED FOR MSMES	ECE	

SPIC-121	MSME	TO DEVELOP A COST-EFFECTIVE E-COMMERCE SOLUTION TAILORED FOR MSMES TO HELP THEM ESTABLISH AN ONLINE PRESENCE. INCLUDE FEATURES THAT SIMPLIFY PRODUCT LISTINGS, ORDER MANAGEMENT, AND CUSTOMER INTERACTIONS.	ECE	
SPIC-122	MSME	CREATE AN INTUITIVE FINANCIAL MANAGEMENT TOOL TAILORED FOR MSMES, INTEGRATING BUDGETING, INVOICING, AND EXPENSE TRACKING.	CSE	
SPIC-123	MSME	DEVELOP ECO-FRIENDLY PACKAGING SOLUTIONS FOR AGRICULTURAL PRODUCTS TO REDUCE ENVIRONMENTAL IMPACT.	MECH	
SPIC-124	MSME	TO DEVELOP AN MOBILE APP THAT HELP MSMES ADAPT TO CLIMATE CHANGE, INCLUDING TOOLS FOR WEATHER FORECASTING, DROUGHT-RESISTANT CROP VARIETIES, AND WATER MANAGEMENT SYSTEMS	CSE	
SPIC-125	MSME	CREATE A PLATFORM THAT PROVIDES MSMES IN AGRICULTURE WITH REAL-TIME MARKET INFORMATION, INCLUDING PRICES, DEMAND TRENDS, AND SUPPLY CHAIN UPDATES. ENSURE ACCESSIBILITY FOR FARMERS WITH LIMITED INTERNET CONNECTIVITY.	ECE	
SPIC-126	MSME	PROJECT TO HARNESS THE SUSTAINABLE POTENTIAL OF COCONUT SHELLS, A BYPRODUCT OF THE COCONUT INDUSTRY, BY PROCESSING THEM INTO HIGH-QUALITY POWDER	MECH	
SPIC-127	MSME	TO DEVELOP A RELIABLE AND EFFICIENT SYSTEM FOR DETECTING PESTICIDE RESIDUES IN VEGETABLES. PESTICIDE CONTAMINATION IN VEGETABLES POSES HEALTH RISKS TO CONSUMERS AND AFFECTS THE ENVIRONMENT.	ECE	
SPIC-128	MSME	TO DEVELOP A ROBUST CYBERSECURITY PROTOCOLS AND TOOLS TO SAFEGUARD HEALTHCARE INFRASTRUCTURE AND DATA INTEGRITY IS ESSENTIAL.	ECE	
SPIC-129	MSME	TO DESIGN A USER-FRIENDLY REMOTE PATIENT MONITORING DEVICES AND APPLICATIONS	ECE	
SPIC-130	TARCIN	DEVELOPING A CHATBOT THAT NOT ONLY UNDERSTANDS USER QUERIES ACCURATELY BUT ALSO RESPONDS SWIFTLY, PROVIDING A SEAMLESS AND REAL-TIME CONVERSATIONAL EXPERIENCE.	CSE	
SPIC-131	TARCIN	PICK-AND-PLACE OPERATIONS TO MORE COMPLEX ACTIONS LIKE OBJECT RECOGNITION, SORTING, OR MANIPULATION.	ECE	
SPIC-132	TARCIN	OBJECT RECOGNITION, TRACKING, AND SCENE INTERPRETATION. OPENCV, TENSORFLOW, AND PYTORCH ARE POPULAR LIBRARIES FOR COMPUTER VISION.	ECE	
SPIC-133	TARCIN	ROBOT EQUIPPED WITH A CAMERA DISPLAY INVOLVES COMBINING ELEMENTS OF NATURAL LANGUAGE PROCESSING (NLP), COMPUTER VISION, AND ROBOTICS	ECE	
SPIC-134	TARCIN	IMPLEMENT SWARM INTELLIGENCE ALGORITHMS THAT ENABLE ROBOTS TO EXHIBIT COLLECTIVE BEHAVIORS.	ECE	

SPIC-135	TARCIN	AUTONOMOUS OR SEMI-AUTONOMOUS DOGS FOR SURVEILLANCE AND RECONNAISSANCE PURPOSES.	ECE	
SPIC-136	JSW	ENVIRONMENTAL IMPACT ASSESSMENT: ENVIRONMENTAL IMPACT ASSESSMENT IN VILLAGE PANCHAYAT USING RIAM SOFTWARE	CE	
SPIC-137	JSW	WATER RESOURCES ENGINEERING: GREEN PAVEMENTS FOR SUSTAINABLE STORM WATER MANAGEMENT	CE	
SPIC-138	JSW	SUSTAINABLE MATERIALS: EXPERIMENTAL STUDY ON PROPERTIES OF FIBRE CEMENT BOARDS FOR BUILDING PARTITIONS	CE	
SPIC-139	JSW	SURVEYING: DESIGN AND NUMERICAL SIMULATION OF AN ODOMETER WHEEL IN SURVEYING	CE	
SPIC-140	JSW	ENGINEERED COMPOSITES: INFLUENCE OF SILICA FUME AND POLYVINYL ALCOHOL FIBRES IN THE ENHANCEMENT OF STRENGTH OF ENGINEERED CEMENTITIOUS COMPOSITES	CE	
SPIC-141	JSW	GEOTECHNICAL ENGINEERING: A STUDY BASED ON GEOTECHNICAL PROPERTIES OF CONTAMINATED SOIL AROUND TANNERY INDUSTRY	CE	
SPIC-142	JSW	STRUCTURAL ENGINEERING: MICRO STRUCTURAL ANALYSIS OF HIGH PERFORMANCE CONCRETE USING USED FOUNDRY SAND (UFS)	CE	
SPIC-143	JSW	CONCRETE TECHNOLOGY: WATER ABSORBING PAVEMENTS BY USING POROUS CONCRETE	CE	
SPIC-144	JSW	STRUCTURAL MONITORING: STUDY OF SHEAR REINFORCED VOIDS OF U-BOOT SLABS WITH GFRP SHEETS	CE	
SPIC-145	JSW	IRRIGATION ENGINEERING: SMART IRRIGATION SYSTEM: ENHANCING AGRICULTURAL WATER EFFICIENCY	CE	
SPIC-146	Shree Tech	AUTOMATIC CHLORINATION OF DOMESTIC WATER, INTEGRATED WITH A TANK LEVEL CONTROLLER, TO ENSURE CONTINUOUS DISINFECTION AND RELIABLE WATER SUPPLY IN RURAL VILLAGES	EEE	
SPIC-147	Shree Tech	TO DESIGN AND IMPLEMENTATION OF AN SUPPORTING DEVICE, SPECIFICALLY UTILIZING STEPPER MOTOR TECHNOLOGY, TO ADDRESS THE UNIQUE NEEDS OF INDIVIDUALS WITH MOBILITY IMPAIRMENTS.	EEE	
SPIC-148	Shree Tech	DEVELOPMENT OF A SEED-SOWING AGRICULTURE ROBOT WITH SERVO MOTORS AND INTEGRATED SPRAYING SYSTEM	EEE	
SPIC-149	Shree Tech	INTEGRATE BLDC MOTORS INTO AUTOMATED SYSTEMS SUCH AS ROBOTIC HARVESTERS, WEEDERS, AND DRONES, ENHANCING PRECISION AND REDUCING MANUAL LABOUR	MECH	
SPIC-150	Shree Tech	IMPLEMENT DATA LOGGING CAPABILITIES USING PLC & SCADA TO RECORD HISTORICAL DATA ON ENVIRONMENTAL CONDITIONS, IRRIGATION SCHEDULES, AND PLANT GROWTH	EEE	

SPIC-151	Shree Tech	TO ENHANCE THE RESILIENCE OF TRANSFORMERS DURING WEATHER ABNORMALITIES, SUCH AS LIGHTNING, HEAVY STORMS, AND EXTREME TEMPERATURES, TO ENSURE RELIABLE AND UNINTERRUPTED POWER SUPPLY	EEE	
SPIC-152	Shree Tech	TO PROVIDE AN ENERGY-EFFICIENT AND SUSTAINABLE ALTERNATIVE TO TRADITIONAL DRYING METHODS, ENSURING THE PRESERVATION OF CARDAMOM QUALITY WHILE REDUCING ENVIRONMENTAL IMPACT	MECH	
SPIC-153	Shree Tech	DESIGN AND DEVELOP A COCONUT DEHUSKING MACHINE USING BRUSHLESS DC (BLDC) MOTORS.	EEE	
SPIC-154	Shree Tech	DESIGN A COST-EFFECTIVE AND SUSTAINABLE IRRIGATION SOLUTIONS BY HARNESSING SOLAR POWER, BY INTEGRATING SOLAR WATER PUMPING AND DRIP IRRIGATION TECHNOLOGIES	MECH	
SPIC-155	Shree Tech	DEVELOP SURGE PROTECTION DEVICES USING HIGH INSULATION POLYMERS TO SAFEGUARD ELECTRICAL SYSTEMS FROM VOLTAGE SPIKES.	EEE	